

Copyright Notice:

Materials published by Intaver Institute Inc. may not be published elsewhere without prior
written consent of Intaver Institute Inc. Requests for permission to reproduce published

materials should state where and how the material will be used.

Software Project Scheduling under

Uncertainties

Intaver Institute Inc.

303, 6707, Elbow Drive S.W.

Calgary, AB, T2V0E5, Canada

tel: +1(403)692-2252

fax: +1(403)259-4533

sales@intaver.com

www.intaver.com

Managing of risk and uncertainties during the course of a project has become one of

the priorities of the software project manager. Any research and development projects

are affected by a large number of events, which can significantly change the course of

a project. These events may form groups of related events or event chains. The paper

discusses a proposed methodology of modeling the software project scheduling using

event chains, classification of the events and chains, identification of critical chains,

analysis of effect of the chains on project duration, cost, and chance of project

completion. The paper presents a practical approach to modeling and visualizing

event chains. The event chains methodology can contribute to reducing uncertainties

in project scheduling through mitigation of psychological biases and significant

simplification of the process of modeling, tracking, and analysis of project schedules.

Introduction

Project scheduling is an important step in the software development process. Software

project managers often use scheduling to perform preliminary time and resource

estimates, general guidance, and analysis of project alternatives. One of the major

challenges in software project management is that it is difficult to adhere to the

schedules due to the uncertainties related to requirements, schedules, personnel, tools,

architectures, budgets, etc.

Software project managers recognize the importance of managing uncertainties. The

iterative development process, identification and analysis of potential risks and

utilization of other best practices can reduce uncertainties and help deliver the project

according to the original time estimate, scope, and cost [1,7]. However, software

project managers are not always familiar with probabilistic scheduling and tracking

techniques or consider it as unnecessary overhead. Modeling the project schedule with

uncertainties on the planning phase remains important as it allows the manager to

estimate feasibility of the delivery date, analyze the project, and plan risk mitigation.

This paper proposes a methodology for managing uncertainties based on an analysis

of project events or groups of related events (event chains). The methodology can be

easily understood by project managers who are not familiar with advanced statistical

mailto:sales@intaver.com
http://www.intaver.com/

theory. Managing uncertainties by the modeling of event chains is based on historical

data, which leads to meaningful results. The software project scheduling using event

chains methodology can be easy adapted. The implementation of the methodology

does not require additional project management resources. In addition, off-the-shelf

software tools that implement event chains methodology are available.

Overview of Existing Methodologies

Project planning usually starts with the development of work breakdown structure

(WBS). The WBS is a hierarchical set of independent tasks. As a part of WBS,

development costs and duration of tasks need to be estimated. After defining the set of

tasks, project managers define the precedence relationship that exists among tasks.

This information can be presented in the form of precedence networks and Gantt

charts. The time needed to complete the project is defined by the longest path through

the network. This path is called the critical path. Project managers can use the critical

path method (CPM), which is available in most project management software, to

identify the critical path [4,8].

In most cases, duration, start and finish time, cost, and other task parameters are

uncertain. The PERT model (Program Evaluation and Review Technique) was

developed in 1950s to address uncertainty in the estimation of project parameters.

According to classic PERT, expected task duration is calculated as the weighted

average of the most optimistic, the most pessimistic, and the most likely time

estimates. The expected duration of any path on the precedence network can be found

by summing up the expected durations. The main problem with classic PERT is that it

gives accurate results only if there is a single dominant path through a precedence

network. When a single path is not dominant, classic PERT usually provides overly

optimistic results [3].

To overcome these challenges Monte Carlo simulations can be used as one of the

alternatives. Monte Carlo simulations are a process that repeatedly sets values for

each random variable by sampling from each variable’s statistical distribution. The

variables can be task duration, cost, start and finish time, etc. They are used to

calculate the critical path, slack values, etc. Monte Carlo simulations have been

proven an effective methodology for the analysis of project schedule with

uncertainties. A number of software systems employ Monte Carlo simulations for

projects [6]. However, Monte Carlo simulation is rarely used in software project

management because of two main reasons. First, most software systems require at

least some knowledge of statistics and risk analysis to define input data and interpret

the results of the analysis. Second, Monte Carlo simulations for software development

does not provide accurate estimates of project parameters (duration, finish time, cost,

etc.) due to the greater uncertainties related to requirements, tools, resources, budget,

etc. compared to many other industries.

Another approach to project scheduling with uncertainties was developed by Goldratt.

Goldratt applied the theory of constraints (TOC) to project management [5,10]. The

cornerstone of TOC is resource constrained critical path called a critical chain.

Goldratt’s approach is based on a deterministic critical path method. To deal with

uncertainties, Goldratt suggests using project buffers and encourages early task

completion. Theory of constraints is well accepted in project management; however,

the use of this approach in software development industry remains relatively low [4].

Software Project Management with Heuristics and Biases

The problem associated with all the aforementioned methodologies lies in the

estimation of project input variables: task durations, start and finish times, cost,

resources, etc. If input uncertainties are inaccurately estimated, it will lead to

inaccurate results regardless of the methodology of project scheduling.

Tversky and Kahneman [14] have proposed that limitations in human mental

processes cause people to employ various simplifying strategies to ease the burden of

mentally processing information to make judgments and decisions. During the

planning stage, software project managers rely on heuristics or rules of thumb to make

estimations. Under many circumstances heuristics lead to predictably faulty

judgments or cognitive biases.

Following are short descriptions of some heuristics that affect the estimation of

project variables for software project management.

The availability heuristic [2,13] is a rule of thumb in which decision makers assess the

probability of an event by the ease with which instances or occurrences can be

brought to mind. For example, project managers sometimes estimate task duration

based on similar tasks that have been previously completed. If they are making their

judgment based on their most or least successful tasks, it can cause inaccurate

estimation.

The anchoring heuristic [14] refers to the human tendency to remain close to the

initial estimate. For example, anchoring will lead to an overestimation of the success

rate of the project with multiple phases because the chance of completion of each

separate phase of the project can be an anchor in estimating the success rate for the

whole project [9].

Judgments concerning the probability of a scenario are influenced by amount and

nature of details in the scenario in a way that is unrelated to the actual likelihood of

the scenario [12]. It is called the representativeness heuristic. This heuristic can lead

to the “gambler’s fallacy” or belief that a positive event is overdue because a series of

negative or undesirable events have already occurred.

Decision makers can be exposed to many cognitive and motivational factors that can

lead to biases in perceptions. This effect is often referred to as selective perception.

For example, estimation of a task’s cost can be influenced by the intention to fit the

task into the project’s budget. As a result, some of the project parameters can be

overestimated.

Plous [11] has made some general recommendations for mitigating the negative

impact of these and other heuristics. It is very important to keep accurate records and

make estimations based on reliable historical data. Compound events should be

broken into smaller events, which have known probabilities of occurrence. Discussion

of best- or worst-case scenarios, for example the estimation of the most optimistic, the

most likely, and the most pessimistic durations in PERT, can lead to unintended

anchoring effects. To reduce dependence on motivational factors, Plous recommends

the analysis of problems without taking expectations into account.

Overview of Event Chains Methodology

The event chains methodology has been proposed to overcome difficulties associated

with the estimation of project parameters, as well as to simplify the process of project

scheduling with uncertainties (schedule risk analysis) for software development.

According to the traditional project management methodology, the task (activity) is a

continuous and uniform process. In reality, the task is affected by external events.

These events can transform the task from one state to another. The state can be

referred to as a process or part of the process with constant properties.

In most cases, especially for research and development projects such as software

development, it is difficult to predict potential events at the stage of project planning

and scheduling. Events can occur stochastically during the course of a task. One task

can be affected many multiple probabilistic events defined by the event properties:

chance of occurrence, probabilistic time of occurrence, and outcome (increase

duration or cost, cancel task, assign or remove resource, etc.). These events will be

included to the task’s list of events. For example, during the course of development of

the particular software feature, it may be discovered that the originally proposed

software architecture is not appropriate. This discovery event may cause the

cancellation of the feature or even the project. It can also cause an increase in the task

duration and cost. The chance of occurrence of this event based on the previous

experience of development of similar tasks is 20%. Based on the same historical data,

the event should occur during first two weeks of the development.

In addition to probabilistic events, there are also conditional events. A conditional

event will occur if some conditions, related to project variables, are met. For example,

if the task has reached a deadline, the event “cancel task” can be generated. It is

possible to have a combined conditional probabilistic event. For example, if the

deadline is reached, there is 20% chance that the task will be canceled.

The events can significantly affect the tasks, a group of tasks, and the whole project.

Tasks within a group can have different relationships. It can be a summary task with

subtasks. A group may also include tasks with joint resources or other common

parameters, which can be affected by the same events. It is important to identify

groups of tasks in order to simplify the process of modeling with events.

One event can lead to other events or create event chains. For example, an event of

architectural change in the software can require refactoring of the software

component. As a result, the resource will be pulled from another task, which will

change a state: a task will be delayed. Therefore, one event (architectural change) may

cause a chain reaction and eventually lead to major change in schedule for the whole

project. Event chains can be presented by an event chains diagram, as shown on Fig

1.

Fig. 1. Example of event chains diagram

Fundamentally, calculations in event chains methodology are a variation of Monte

Carlo simulations used in traditional risk analysis. During the simulation process,

project input variables (cost, duration, start and finish time, chance of completion) for

each task will be calculated based on event properties. The result of calculation is a

statistical distribution for the duration, start and finish time, success rate, and cost of

the whole project or any separate task. The results can be represented in the form of

frequency or cumulative probability plots. Statistical parameters for each output

variable, including mean, variance, standard deviation, maximum and minimum

values can also be calculated. They will be used to assess probability of completion of

the project within a certain time and budget, as well as the probability of

implementing a particular task (for example, features in a software development

project).

All scheduling methods require making an initial estimate for the input project

variables (task duration, start and finish time, etc.). Goldratt [5] recommends using

median for the task duration; Monte Carlo simulations [6] allow the project manager

to define a statistical distribution. Because event chains methodology is based on

Monte Carlo simulations, a project manager is able to specify statistical distributions

for the input project variables. However, it is not recommended because if event

chains are defined, it can cause a double count of the same uncertainties. Instead,

input parameters associated with focused work on activity or “best case scenario”

should be defined. In addition, the project manager should define events and event

chains that can affect the project schedule. For example, the manager can estimate

that developing a particular feature will take from 5 to 8 days. Then the question that

should be asked is, “What affects this duration?” It can be a number of potential

events: requirement changes, unfamiliarity with development tools, unclear

definitions of software architecture, hardware failure, etc. Lists of these events should

be assigned to the task. If everything goes well and no issues occur (focused work on

activity), the duration of the task will be 5 days.

The probability of a task lying on the critical path (criticality index) used in classic

Monte Carlo simulation [8] also can be calculated as a part of the methodology.

However, sometimes it is very important to find out which events or event chains

affect output project variables the most. It can be accomplished using sensitivity

analysis. These single events or event chains are called critical events or event chains.

Results of sensitivity analysis can be presented in the form of sensitivity charts. To

generate the sensitivity chart, correlation coefficients between output project

parameters and events or event chains must be calculated.

One of the most important components of the event chains methodology is monitoring

actual project performance and comparing it with original estimates. The schedule

risk analysis process must be repeated every time new results pertaining to the project

or performance of each particular task have become available. Because events are

time-based, a new calculation will not include events that could have occurred prior to

the actual time. As a result, a new updated project forecast would be available based

on real project data.

Event chains methodology is designed to mitigate negative impact of heuristics

related to estimation of project uncertainties:

1. The task duration, start and finish time, cost, and other project input parameters can

be influenced by motivational factors such as total project duration to much greater

extend than events and event chains. It happens because events cannot be easily

translated into the duration, finish time, etc. Therefore, event chains methodology

can help to mitigate certain effects of selective perception in project management.

2. The event chains methodology relies on estimation of duration based on focused

work on activity and does not necessarily require low, base, and high estimation or

statistical distribution; therefore, the negative effect of anchoring can be mitigated.

3. The probability of event can be easily calculated based on historical data. It helps to

mitigate the effect of the availability heuristic. The probability equals the number of

times an event actually occurred in previous projects divided by total number of

situations when event could have occurred. In classic Monte Carlo simulations, the

statistical distribution of input parameters can also be obtained from the historical

data; however, the procedure is more complicated and rarely used in practical

software project management.

4. The compound events can be easy broken into smaller events. Information about

these small events can be supported by reliable historical data. This mitigates the

effect of biases in estimation of probability and risk.

Single Events

Single events are the building blocks of the comprehensive probabilistic model of the

software development process.

Each event has a number of properties. The events can affect the whole project, a

group of tasks, a particular task, or the resource. For example, if it is discovered that a

selected software tool does not provide the required functionalities, all tasks that are

using this tool can be delayed.

The following types of events are commonly used in the software development

project:

 Start and end tasks or group of tasks,

 Duration of a task or duration of each task within the group can be increased or

reduced,

 Costs associated with a task or group of tasks can be increased (reduced),

 Tasks or each task within a group can be canceled,

 Resources can be reassigned or a new resource can be assigned, and

 Whole projects can be canceled.

A new task duration or cost can be calculated in different ways. The task can be

restarted from the moment when an event has occurred. Further, the task can be

delayed or duration can be increased/ reduced. For example, duration can be increased

by 20%.

The events can be categorized based on relationship between individual tasks (group

of tasks) they are assigned to and the tasks (group of task) they are affecting. The

event can be assigned to and affect the same task. Alternatively, the event can affect a

different task or a group of tasks from the task it was assigned to. For example, a

purchase of more powerful hardware will reduce development time for a group tasks.

Often a single event can be initiated within a project without any relationship to the

particular task. It can affect a single task, a group of tasks, or a complete project. For

instance, changes in the project’s budget can affect all tasks from the moment these

changes have occurred.

Another property of the event is the chance of its occurrence. For example, there is a

2% chance of the event where the whole project will be canceled due to budgetary

constraints. If the cost or duration of the task has been increased or reduced, the event

will include additional set of properties. This information includes time or cost

additions or time and cost savings. This can be calculated in absolute units (days,

dollars, etc.) or as a percentage of the task duration or cost. For example, in event of

inconsistent software development requirements, duration of the construction iteration

can increase by 30%.

One task can have a group of mutually exclusive events. For instance, there is a 20%

chance that duration of a task will be increased by 35%, a 30% chance that duration

will increase by 10%, and a 5% chance that task will have to be canceled.

Alternatively, the task can be simultaneously affected by some combination of these

events. For example, there is a 20% chance that duration and cost can be increased

together.

The next property of the event is chronological. This parameter can be deterministic,

but in most cases it is probabilistic. For example, the event can occur between the

start time and end time of the task minus two days, but will most likely occur two

weeks after the task has started. This information can be represented by the triangular

statistical distribution.

The time when the event occurs is important. If the event results in the cancellation of

the task, to calculate the task duration, it is important to know when it occurred. This

information is also crucial when tracking of project performance in order to filter

events that could have occurred before the actual date. Finally, in certain cases, it is

essential to know when the event has occurred to calculate the new duration and cost.

Event Chains

Event chains are the cornerstones of the proposed methodology. There are two main

groups of event chains: explicit and implicit. In explicit event chains, one event causes

another event. Implicit event chains include conditional events; therefore, in implicit

event chains, one probabilistic event may cause another event. For example, the

original event affects task duration and if there is a change in requirements, task

duration can be increased. However, the task may have a deadline. A conditional

event can be linked to this project parameter. If the deadline is reached, the event will

result in cancellation of the task. In current example, the original event is causing the

chain reaction, which leads to termination of the task.

The proposed methodology enables project managers to model very complex project

scenarios. To illustrate, below provided some of the possible situations that can be

modeled easier by using proposed methodology compared to traditional methods.

One of these scenarios relates to probabilistic and conditional branching, used in

classical Monte Carlo simulations. For example, there is a 40% chance that a

particular feature should be developed after analysis of the requirements, and a 60%

chance that this development will not be necessary. Event chains methodology makes

conditional and probabilistic branching much more flexible. For example, if one event

has occurred, there will be a 60% chance that it will trigger an event in another task.

An event can activate other events immediately or with delay. Sometimes events can

affect a future task. For instance, changes in requirements will lead to extra

development in the future.

Sometimes, events can affect previous tasks in the project schedule. This is a common

occurrence in software development, where an existing component requires

refactoring to comply with a planned development. In this case, the refactoring task,

which originally was not in the project schedule, will be automatically generated

using the event “start task”. It leads to an important feature of the proposed

methodology – the ability to reschedule activities using dynamically generated tasks.

Event chains can be modeled using circular relationships. Circular relationships are

not just mathematical phenomena for the proposed methodology, they occur in the

real world. For example, the development of a particular feature can fail because of a

problem with software performance. To fix the performance problem, the developer

must refactor an existing module. After this, the provability of failure of the

performance test can be reduced. However, there is still a chance that the existing

module must be refactored again. Project constraints such as deadlines and costs can

be used to address the circular relationship problems.

In traditional methodologies, there are no relationships between tasks during the

course of the task. In reality, synergies between tasks significantly affect project

schedule. Event chains allow taking potential synergies into account. For example, if

there is a delay in one task, other parallel tasks can be delayed. The scenario can be

modeled by an event chain initiated by single event with an increased duration

outcome.

In addition, event chains offer a possible solution to the resource allocation problem.

This can be accomplished using the conditional events “Assign new resource” or

“Reassign resource”, which are linked to the task deadline or an intermediate

milestone. If there is a delay in a certain task caused by a specific event, new

resources can be borrowed from another task and reassigned from the moment the

event occurred. The task will then change its state and the project schedule will be

recalculated with a new resource allocation. Simulation results will present the

statistics of the resource allocations.

Analysis of Software Project using Event Chains

Methodology

The planning, tracking, and analysis of software development projects is comprised of

multiple steps. Generally, the process is similar to traditional approach; however,

there are a few significant differences. The following example illustrates the

workflow based on event chains methodology. For simplification, only single

probabilistic events are included in this example. The model has been created using a

commercial project planning software that utilizes event chains methodology.

Creating the Baseline Project Schedule

The first step in scheduling processes using event chains is very similar to what

project managers do using traditional methodologies. The project schedule will be

created and presented in the form of a Gantt chart. The project manager should

specify input project parameters, such as duration, start and finish time, cost, etc., that

are associated with a “best case scenario” or a focused work on activity.

Defining events

Each task can be affected by multiple potential events. The project manager should set

up a list of events for tasks and resources. Fig. 2 shows list of events for the task.

Fig. 2. Hierarchical event table

Each event has a number of properties. The process of defining these events can be

tedious and complicated. To simplify the definition of events, event templates can be

used. An event template is a standard hierarchical list of events for a particular

industry or the group of projects. Lists of events for the task, group of tasks, or a

project can be generated based on a template. To simplify the management of events

even further, events from the template can be turned on and off on a task-by-task

basis.

Performing Simulation and Analysis

To generate a schedule with uncertainties, Monte Carlo simulations should be

performed using a baseline project schedule and an event list. The number of

simulations can be defined based on the lowest probability of the occurrence of

events. The simulation can be stopped when the results of simulations converge: that

is, when the main calculation outputs (duration, finish time, project cost, etc.) within a

given number of simulations remain close to each other. Unfortunately, because of the

discrete nature of the event chains, simulations will converge relatively slowly. In

reality, the number of simulations can be between a few hundred to a few thousand.

However, using modern computer hardware, Monte Carlo simulations for realistic

software development projects can be executed within seconds. Actual simulation

time depends on computer performance, number of simulations, number of tasks, and

number of events.

The results of a calculation can be presented in the form of a Gantt chart together with

baseline project schedule (see Fig. 3).

Fig. 3. Results of calculation and baseline project schedule

In this example, events significantly increased the duration of all tasks and the whole

project. Results of the simulation are shown on Fig 4. as a table and a frequency chart.

The chance that project duration is below a certain number is a measure of the project

risk.

Fig. 4. Simulation results: frequency chart for duration and results in table format

Results of the sensitivity analysis are presented on Fig. 5. The chart shows how

sensitive the project duration is to the uncertainty related to a number of events. It

demonstrates that duration is most sensitive to the “Software Performance Not

Acceptable” event. This means that software performance is the project’s the most

important risk factor. This example illustrates how the proposed methodology allows

the generation of risk lists for the software projects.

Fig. 5. Sensitivity chart for events and event chains

Monitoring the Course of the Project

To track project performance, the project manager should input the completion

percentage of a particular task and the date and time when this measurement occurred.

The results of tracking a specific task are shown on Fig. 6. Using this chart, the

manager can easily compare actual data with the baseline and calculated results. As

soon as the project manager inputs a new percentage of work done, a Monte Carlo

simulation can be performed and a new forecasted task duration and finish time will

be calculated.

Fig. 6. Tracking and forecasting of performance for the specific task

Conclusions

The proposed event chains methodology is applicable to different time-related

business or technological processes. The methodology can be very effective in

software project management, where it can significantly simplify a process with

multiple uncertainties.

Event chains methodology includes the following main principles:

1. A task in most real projects is not a continuous uniform process. It is affected by

the external events, which transform task from one state to another.

2. The events can cause other events, which will create the event chains. These event

chains will significantly affect the course of the project.

3. The identification of the critical chain of events makes it possible to mitigate their

negative affects. Risk list of the project can be generated as a result of sensitivity

analysis.

4. The tracking of the task progress and the continuous comparison of actual

progress with estimates ensures the project schedule is calculated based on

updated information.

5. The analysis of historical data related to current and past similar project

performance is necessary to obtain information about probabilities and outcome of

events.

6. The event chains methodology simplifies rescheduling, conditional and

probabilistic branching, analysis of project with synergists and circular

dependencies, and resource allocation.

Event chains methodology is a practical approach to scheduling software projects that

contain multiple uncertainties. A process that utilizes this methodology can be easily

used in different projects, regardless size and complexity, using off-the-shelf software

tools.

References

1. Beck K.: Extreme Programming Explained – Embrace Challenge. Addison-

Wesley, Reading, MA. (2000)

2. Carroll, J.S.: The effect of imagining an event on expectations for the event: An

interpretation in terms of availability heuristic. Journal of Experimental

Psychology, 17, (1978) 88-96

3. Cho J.G., Yum B.J.: An Uncertainty Importance Measure of Activities in PERT

Networks. International Journal of Production Research, 12, (1964) 460-470

4. Futrell R.T., Shafer D.F., Shafer L.I.: Quality Software Project Management,

Prentice Hall PTR, Upper Saddle River, NJ, (2002)

5. Goldratt, E.: Critical Chain. North River Press, Great Barrington, Mass. (1997)

6. Hulett D.T.: Schedule Risk Simplified, PM Network, July, (1996) 23-30

7. Jeffries, R., Anderson A., Hendrickson C.: Extreme Programming Installed.

Addison-Wesley, Reading MA. (2000)

8. Klastorin T.: Project Management. Tools and Trade-Offs. Wiley, (2004)

9. McCray G.E., Purvis R.L., McCray C.G.: Project Management Under

Uncertainties: The Impact of Heuristics and Biases. Project Management Journal.

Vol. 33, No. 1. (2002) 49-57

10. Newbold R.C.: Project Management in the Fast Lane: Applying the Theory of

Constraints. St. Lucie Press, Boca Raton, FL, (1998)

11. Plous S.: The Psychology of Judgment and Decision Making, McGraw-Hill

(1993)

12. Tversky, A., Kahneman, D.: Belief in the law of small numbers. Psychological

Bulletin, 76, (1971) 105-110

13. Tversky, A., Kahneman, D.: Availability: A heuristic for judging frequency and

probability. Cognitive Physiology, 5, (1973) 207-232

14. Tversky, A., Kahneman, D.: Judgment Under Uncertainty: Heuristics and biases.

Science, 185, (1974) 1124-\1130

